—Matemática discreta
libro de Francesc Comellas, Josep Fàbrega y Anna Sànchez
formato pdf
pulsar botón Download Now - [Tienes que estar registrado y conectado para ver este vínculo]
[Tienes que estar registrado y conectado para ver este vínculo]
Contenidos:
Prólogo
1 Algoritmos
1.1 Introducción
1.2 Algoritmos y máquina de Turing
1.3 Lenguaje algorítmico
1.4 Análisis de algoritmos
1.5 Comparación de algoritmos
1.6 Clasificación de algoritmos
Enumeración
2 Combinaciones y permutaciones
2.1 Selecciones ordenadas y no ordenadas
2.2 Algunos ejemplos de aplicación
2.3 Propiedades de los coeficientes binomiales
3 Principios básicos de enumeración
3.1 Cardinales de conjuntos
3.2 Principio de inclusión-exclusión
3.3 Biyecciones. Números de Catalan. Particiones
3.4 Elprincipio del palomar y el teorema de Ramsey
4 Funciones generadoras
4.1 Ecuaciones de recurrencia
4.2 Funciones generadoras
4.3 Ecuaciones de recurrencia lineales
4.4 Números combinatorios
Teoría de grafos
5 Grafos y digrafos
5.1 Definiciones básicas
5.2 Caminos, conectividad ydistancia
5.3 Operaciones entre grafos
5.4 Digrafos
5.5 Representación matricial
5.6 Grafos yredes de interconexión
5.7 Planaridad: la fórmula de Euler
5.8 Caracterización de los grafos planares
6 Árboles
6.1 Árboles
6.2 Árboles generadores
6.3 Númerode árboles generadores
6.4 Obtención de todos los árboles generadores
6.5 Árboles generadores de coste mínimo
7 Circuitos y ciclos
7.1 Grafos eulerianos
7.2 Ciclos hamiltonianos
7.3 Ciclos fundamentales
7.4 Análisis de redes eléctricas
8 Flujos, conectividad y apareamientos
8.1 Redesde transporte
8.2 El teorema del flujo máximo–corte mínimo
8.3 Conectividad
8.4 Los teoremas de Menger
8.5 Apareamientos en grafos bipartitos
8.6 El teorema de Hall
Estructuras algebraicas
9 Introducción a las estructuras algebraicas
9.1 Relaciones
9.2 Aplicaciones
9.3 Operaciones
9.4 Estructuras algebraicas
10 Grupos
10.1 Definiciones y propiedades
10.2 Grupos abelianos finitos
10.3 Grupos de permutaciones
10.4 Digrafos de Cayley
10.5 Enumeración de Pólya
11 Anillos y cuerpos
11.1 Definiciones y propiedades
11.2 El anillo de los polinomios
11.3 Cuerpos finitos
12 Estructuras combinatorias
12.1 Diseños combinatorios
12.2 Geometrías finitas
12.3 Cuadrados latinos
libro de Francesc Comellas, Josep Fàbrega y Anna Sànchez
formato pdf
pulsar botón Download Now - [Tienes que estar registrado y conectado para ver este vínculo]
[Tienes que estar registrado y conectado para ver este vínculo]
Contenidos:
Prólogo
1 Algoritmos
1.1 Introducción
1.2 Algoritmos y máquina de Turing
1.3 Lenguaje algorítmico
1.4 Análisis de algoritmos
1.5 Comparación de algoritmos
1.6 Clasificación de algoritmos
Enumeración
2 Combinaciones y permutaciones
2.1 Selecciones ordenadas y no ordenadas
2.2 Algunos ejemplos de aplicación
2.3 Propiedades de los coeficientes binomiales
3 Principios básicos de enumeración
3.1 Cardinales de conjuntos
3.2 Principio de inclusión-exclusión
3.3 Biyecciones. Números de Catalan. Particiones
3.4 Elprincipio del palomar y el teorema de Ramsey
4 Funciones generadoras
4.1 Ecuaciones de recurrencia
4.2 Funciones generadoras
4.3 Ecuaciones de recurrencia lineales
4.4 Números combinatorios
Teoría de grafos
5 Grafos y digrafos
5.1 Definiciones básicas
5.2 Caminos, conectividad ydistancia
5.3 Operaciones entre grafos
5.4 Digrafos
5.5 Representación matricial
5.6 Grafos yredes de interconexión
5.7 Planaridad: la fórmula de Euler
5.8 Caracterización de los grafos planares
6 Árboles
6.1 Árboles
6.2 Árboles generadores
6.3 Númerode árboles generadores
6.4 Obtención de todos los árboles generadores
6.5 Árboles generadores de coste mínimo
7 Circuitos y ciclos
7.1 Grafos eulerianos
7.2 Ciclos hamiltonianos
7.3 Ciclos fundamentales
7.4 Análisis de redes eléctricas
8 Flujos, conectividad y apareamientos
8.1 Redesde transporte
8.2 El teorema del flujo máximo–corte mínimo
8.3 Conectividad
8.4 Los teoremas de Menger
8.5 Apareamientos en grafos bipartitos
8.6 El teorema de Hall
Estructuras algebraicas
9 Introducción a las estructuras algebraicas
9.1 Relaciones
9.2 Aplicaciones
9.3 Operaciones
9.4 Estructuras algebraicas
10 Grupos
10.1 Definiciones y propiedades
10.2 Grupos abelianos finitos
10.3 Grupos de permutaciones
10.4 Digrafos de Cayley
10.5 Enumeración de Pólya
11 Anillos y cuerpos
11.1 Definiciones y propiedades
11.2 El anillo de los polinomios
11.3 Cuerpos finitos
12 Estructuras combinatorias
12.1 Diseños combinatorios
12.2 Geometrías finitas
12.3 Cuadrados latinos