Como ciencia de los organismos vivos, la biología involucra de una manera directa las contradicciones decisivas de la dialéctica: la producción y la reproducción, la continuidad y la discontinuidad, la herencia y el medio, entre otras cuestiones. Pero esas interrelaciones, dice Engels, no se pueden “encajar” en los hechos sino que es preciso “descubrirlas” en ellos y verificarlas por medio de la experimentación. Ni en biología ni en ninguna otra ciencia la dialéctica materialista tiene nada diferente que decir, salvo reconocerse a sí misma, lo cual significa defender los postulados que han sido corroborados empíricamente por la experimentación y la observación, separándolos de las adherencias ajenas. La ciencia es única, si bien no es fácil reconocerla en cada momento porque, como cualquier fenómeno, está en permanente proceso de cambio. La explicación estática y canónica, tan usual en los manuales, conduce a una concepción equivocada del saber, que a lo largo del tiempo ha evolucionado tanto como las especies.
Las posiciones de la dialéctica materialista respecto de la biología, harto resumidas, ya fueron expuestas en los inicios mismos del darwinismo por Engels en el “Anti-Dühring” y la “Dialéctica de la naturaleza”, aunque este último texto no se conoció hasta su publicación en 1925 en alemán y posteriormente en ruso. Engels destacó que un fenómeno tan complejo como la evolución sólo se puede explicar sobre la base de una colaboración entre multiples disciplinas científicas, algo diametralmente opuesto a lo que en la actualidad se observa, ya que la genética ha fagocitado a las demás ciencias de la vida, imponiendo a los genes como causa única y exclusiva de toda la evolución de la materia viva desde sus orígenes. No hay espectáculo más penoso que los actuales manuales de paleontología, reconvertidos en una rama de la genética, tratando de explicar la transformación de los homínidos en carnívoros con alambicados argumentos mutacionistas.
También advertía Engels, más que justificadamente, de que las líneas “duras y rígidas” son incompatibles con el evolucionismo y, naturalmente, con la dialéctica. Sin embargo, también comprobamos hoy que la biología se ha llenado de barreras metafísicas infranqueables e insuperables que jamás se comunican, la más conocida de las cuales son las que separan al medio ambiente del organismo y luego a éste de sus propios genes, hasta el punto de que la teoría sintética pretende hacer creer que los genes -si es que existe algo así- ni siquiera forman parte del cuerpo. Estas barreras metafísicas no nacen en la biología sino que, junto con el atomismo, se importan de la física a mediados del siglo XVIII: el medio (el espacio, el tiempo) es el escenario en el que se manifiesta la acción de las fuerzas físicas y, por su mismo carácter absoluto, no depende de los cuerpos. El continente es diferente del contenido. Trasladado a la biología, el medio se divorcia del fin, de modo que, para ser verdaderamente científica, también debía separar los fines de los medios. Esta operación llega envuelta en la quiebra del concepto tradicional, amplio, de causalidad, que estaba siendo sustituido por otro mucho más restringido. Aristóteles hablaba de causas formales, materiales, finales y eficientes, mientras que en el siglo XVIII sólo quedarán las dos últimas. Este proceso conducirá a la oposición entre ambos tipos de causas, las finales y las eficientes, que era el preludio de la eliminación de las primeras, las finales, que desaparecerán en el siglo siguiente como consecuencia del mecanicismo, considerando que sólo las causas eficientes son causas verdaderas, una operación característica de la economía del pensamiento porque, en expresión de Bacon, las causas finales son “vírgenes estériles” (311b). En las corrientes dominantes de la biología el finalismo es casi un insulto porque no admiten ninguna clase de causa final, interpretada siempre como algo trascendente, las causas últimas, normalmente por referencia al creador, a la providencia divina, para rechazar cualquier posibilidad de un plan externo a la naturaleza misma. En su lugar ponen un determinismo calificado de “ciego”, dominado por el azar, en donde la evolución no se interpreta como un progreso que se manifiesta en la clasificación de las especies.
El finalismo tiene su origen en Aristóteles; es una doctrina filosófica presente en la mecánica clásica del siglo XVIII, que también tuvo siempre connotaciones vitalistas presentes en conceptos, como el de “fuerza viva” de Leibniz sin que nadie se rasgara las vestiduras. En 1744 Maupertuis formuló el postulado de acción mínima con un claro sentido finalista bajo el nombre de “ley de economía de la naturaleza”: la naturaleza es ahorrativa en todas sus acciones, no produce nada inútilmente (natura nihil facit frustra). En cualquier cambio que se produzca, la suma de las acciones (energías) consumidas es la más pequeña posible. Como el hombre, la naturaleza también “elige” entre las distintas opciones que se les presentan aquella que resulta más barata. Hoy las corrientes dominantes en la biología siguen ancladas en este tipo de formulaciones del siglo XVIII. La situación no cambió cuando los antiguos conceptos físicos, como “fuerza viva”, fueron sustituídos por los modernos de “energía” porque la energía siguió siendo algo diferente y separado de la masa (materia). El concepto de energía, en cuanto capacidad para realizar un trabajo, nunca perdió el sentido finalista que le persigue desde su origen; el de masa (materia) es el refugio de las interpretaciones mecanicistas y reduccionistas. La termodinámica primero y la teoría de la relatividad después, demostraron que esta dicotomía era falsa, pero para entonces el abismo entre la causa eficiente, mecánica, natural o inconsciente, y la causa final, intencional, consciente o artificial ya había tomado carta de naturaleza (313). Por eso decía Poincaré que el principio de acción mínima tiene “algo de chocante para el espíritu”; presenta los fenómenos físicos como si fueran seres animados y libres, por lo que sería mejor reemplazar su formulación por otra en la cual “las causas finales no parecieran sustituir a las causas eficientes” (314).
Una formulación diferente nunca podrá disimular los fenómenos materiales. Causalidad y finalidad forman una unidad dialéctica o, si se prefiere, un proceso circular, cíclico o, más exactamente, espiral. En el griego antiguo la palabra “cambio” se traducía por metabolei, un término que también tiene connotaciones claramente biológicas y que remite a la noción de interacción, la causa sui de Espinosa. Del mismo modo, para Kant, el organismo forma una unidad articulada en donde “todo es fin y recíprocamente medio”. Hegel siguió esa misma línea de crítica del mecanicismo, al que opuso lo que calificó de “quimismo”. Un error de los más graves, según Hegel, es la aplicación del mecanicismo a la materia orgánica, que debe ser sustituido por la acción recíproca. En las vinculaciones mecánicas los objetos se relacionan de una manera exterior, unos independientemente de los otros; en la química, unos se completan con los otros. Las causas no están separadas de sus efectos, ni los medios de los fines: “Aun el fin alcanzado es un objeto que sirve a su vez de medio para otros fines, y así hasta el infinito” (314b). Como en cualesquiera otros, en los fenómenos de la naturaleza, decía Le Dantec, las causas se convierten en efecto y los efectos en causas (315). Los efectos retroalimentan a las causas. Los dispositivos biológicos funcionan de manera reactiva ante los estímulos exteriores. Con distintas variantes la interacción entre la causa y el efecto se manifiesta en los más diversos fenómenos biológicos, e incluso sicológicos: es la homeóstasis fisiológica, la memoria, la imitación, el reflejo sicológico o la retroalimentación cibernética de los sistemas abiertos (316). Así, ante una agresión del entorno (antígeno), el sistema inmunitario del organismo, después de reconocer el tipo concreto de ataque, reacciona segregando anticuerpos que interactúan con los invasores para eliminarlos. Otro ejemplo: la estatura de una persona tiene un indudable componente génico que se transmite hereditariamente a la descendencia; de progenitores altos nacen descendientes también altos. Ahora bien, este tipo de fenómenos deben analizarse de manera evolutiva. Así, la estatura media en España ha crecido en las últimas décadas, lo cual no puede imputarse al genoma sino a otros factores, tales como la mejora en la cantidad y en la calidad de la alimentación. Lo mismo sucede con la estatura de los homínidos, que ha crecido a lo largo de su evolución.
Las explicaciones unilaterales, deterministas o finalistas, han promovido agotadoras controversias en biología que resultan irresolubles en la forma en que se han planteado porque sus presupuestos son metafísicos; no tienen en cuenta la evolución. Así, el mendelismo se limita a exponer sólo una parte de los hechos. Lo que toma como factores causales originarios (genoma, célula, fecundación sexual) son efectivamente causa inmediata de numeros fenómenos vitales. Pero a su vez son componentes vitales muy complejos y muy organizados que no pueden tener un carácter originario, por muchos saltos cualitativos y mutaciones que se puedan imaginar. Su aparición evolutiva constituye una etapa muy larga cuyo punto de partida han sido otras formas intermedias de organización de la materia viva, más elementales y rudimentarias. Por consiguiente, son a su vez consecuencia de otros primigenios, el instrumento a través del cual se transmiten determinados cambios en el ambiente y en el cuerpo del ser vivo. Un factor causal directo e inmediato que no excluye, a su vez, la intervención de otro tipo de factores diferentes que, generalmente, tienen una importancia mucho mayor que el propio genoma y de los cuales depende el genoma mismo. En un sentido evolutivo el genoma no es causa sino consecuencia de esos otros factores, y lo mismo cabe decir de las células eucariotas (nucleadas), la fecundación y la reproducción sexual, en general, que sólo existen en los organismos más evolucionados y, por tanto, en los de aparición más tardía. La conclusión, pues, es que los factores hereditarios son una causa pero, ante todo, un efecto de la evolución, contribuyendo a la aceleración de los cambios y, por lo tanto, de la marcha de la evolución. Por lo tanto, tampoco se pueden identificar con la vida misma porque la vida no se resume ni se reduce a ninguna de sus formas materiales tomada por separado. Cualquier forma de vida, por simple que sea, es una articulación de varios componentes orgánicos distintos, nunca de uno sólo. La vida no es ADN, ni células ni fecundación. Hay formas de vida que no se basan en el ADN, ni son celulares y ni conocen la fecundación.
Como es habitual, a la hora de inculpar al finalismo Lamarck se convirtió en el blanco de las iras de los partidarios de la teoría sintética. Pero una vez más, han construido un enemigo a su imagen y semejanza porque lo que el naturalista francés dijo con claridad fue lo siguiente: “Es un verdadero error atribuir a la naturaleza un fin, una intención cualquiera en sus operaciones; y este error es uno de los más comunes entre los naturalistas”. Un poco más adelante repite que los fines en los animales no son más que una apariencia: no son verdaderos fines sino necesidades (317). Sin embargo, también hay que tener presente que el actualismo, por un lado, así como la insistencia funcionalista de Lamarck, por el otro, le da un cierto aire finalista a algunos de sus textos, de lo que algunos historiadores neodarwinistas de la biología se han aprovechando para ridiculizar su pensamiento.
Aunque a los neodarwinistas les repugne reconocerlo, la obra de Darwin está lejos del ciego determinismo que pretenden imputarle. En ella aparecen las profundas raíces aristotélicas sobre las que se asienta el pensamiento del naturalista británico, donde una cierta idea de finalidad también está claramente presente, lo mismo que en Lamarck. Según Darwin la evolución tiene su origen en la “selección natural”, un fenómeno que no es diferente de la “selección” que el hombre lleva a cabo. Su noción de “selección natural” no es, pues, más que una “elección” que lleva a cabo la naturaleza en favor del mejor, el más apto o el más fuerte, es decir, un concepto antropomorfo. Darwin alude en numerosas ocasiones a la idea de fin y perfección: “Todo ser tiende a perfeccionarse cada vez más en relación con sus condiciones. Este perfeccionamiento conduce inevitablemente al progreso gradual de la organización del mayor número de seres vivientes en todo el mundo. Pero entramos aquí en un asunto muy intrincado, pues los naturalistas no han definido a satisfacción de todos lo que se entiende por progreso en la organización” (318). Sin embargo, según el evolucionista británico las tendencias teleológicas de los seres vivos no son unilaterales sino contradictorias: “Hay una lucha constante entre la tendencia, por un lado, a la regresión a un estado menos perfecto, junto con una tendencia innata a nuevas variaciones y, por otro lado, la fuerza de una selección continua para conservar pura la raza. A la larga la selección triunfa” (319). No obstante, continúa Darwin, en ocasiones prevalece la tendencia opuesta: “He sentado que la hipótesis más probable para explicar la reaparición de los caracteres antiquísimos es que hay una ‘tendencia’ en los jóvenes de cada generación sucesiva a producir el carácter perdido hace mucho tiempo y que esta tendencia, por causas desconocidas, a veces prevalece” (320). Como en Lamarck, la noción de fin en Darwin tiene que ver con la de función, es decir, con la adaptación ambiental. De ahí que hable de órganos “creados para un fin especial” (321).
El finalismo es el contrapunto de la teoría de la involución, otra de las incongruencias de una teoría seudocientífica que recurre a negar uno (el finalismo) o a afirmar el otro (la involución) según la conveniencia de cada caso. La involución es una ideología de la decadencia, es decir, esencialmente pesimista y su origen es el pensamiento económico burgués. David Ricardo, seguido por Malthus y John Stuart Mill, formuló la ley de la fertilidad decreciente del suelo, luego reconvertida en ley de los rendimientos decrecientes en cualquier clase de actividad económica: cada inversión suplementaria de capital (en la tierra o en cualquier otro medio de producción) proporciona un rendimiento inferior al de la inversión precedente, de manera que, alcanzado determinado limite, resulta imposible obtener ningún nuevo incremento. El universo marcha hacia una hecatombe que desborda lo económico e incluso la escala planetaria para entrar en lo cósmico: “Podemos estar acercándonos al fin de un callejón sin salida, quizá hayamos llegado ya”, profetizó Schrödinger (321b). El planteamiento de la cuestión, por lo tanto, va mucho más allá de las innovaciones tecnológicas y, por supuesto, de las relaciones de producción capitalistas: cualquiera que sea el modo de producción, la Tierra es finita, los recursos de agotan y el caos aumenta por causas naturales inexorables. Es la versión economicista de la predestinación luterana, es decir, una ideología enmascarada tras una fachada seudocientífica.
De la economía, el irremediable desplome pasó a la termodinámica, a cuya segunda ley le otorgaron un carácter universal y absoluto. Así, en 1848 Mayer calculó que el Sol se apagaría dentro de 5.000 años. Por su parte, Kelvin planteó que, como consecuencia de ello, el planeta será cada vez más frío e inhabitable y Clausius fue mucho más allá al pronosticar la muerte térmica del universo en su conjunto: llegará un momento en el cual habrá un universo inerte, materia sin movimiento y, por consiguiente, sin vida. A partir de Clausius el pensamiento burgués tuvo la oportunidad de seguir involucionando con un fundamento que ya no era económico sino físico, es decir, plenamente “científico”. Siguió su recorrido cuesta abajo, introduciendo las distintas modalidades agónicas de la civilización, en general, no de la civilización que la burguesía representa, para la cual no hay alternativa posible pues la hecatombe deriva de la propia actividad del hombre sobre la Tierra.
Para introducir la predestinación divina dentro de la ciencia había que sustentar toda la física sobre la termodinámica, es decir, demostrar que ésta es una teoría de carácter general y que las demás teorías (astronomía, mecánica cuántica, biología, etc.) se reducen o se sustentan sobre ella. Es lo que imaginó Poincaré cuando reconoció las esperanzas de algunos científicos hace un siglo: “Tratamos hoy de elevar sobre la termodinámica solamente el edificio entero de la física matemática” (321c) y recientemente Atlan ha procedido a una extrapolación semejante al sostener que el segundo principio de la termodinámica es el único gran principio de la física (321d). Sin embargo, a diferencia de la ley de la conservación de la energía, que sí tiene un carácter general para toda la física (conservación del espín, del momento, de la carga eléctrica, de la cantidad de movimiento, etc.), el segundo principio de la termodinámica es una ley local, limitada a los fenómenos que la termodinámica oroginariamente pretendió explicar y, por consiguiente, sujeta a las hipótesis que configuraron esta rama de la físca, entre las cuales cabe reseñar las siguientes:
— la termodinámica no tiene en cuenta la composición de la materia sino sólo los fenómenos basados en el intercambio de calor y trabajo, al margen de condicionantes eléctromagnéticos, nucleares, químicos o de cualquier otro tipo
— las leyes que rigen los sistemas térmicos se fundamentan en las leyes de los gases perfectos, un modelo idealizado en el que las moléculas se consideran mutuamente independientes y su volumen se supone insignificante en comparacion con el volumen total que ocupa el gas. A pesar de que las moléculas se conciben como puntos matemáticos inextensos, acaban chocando unas con otras, que es el medio a través del cual intercambian energía, una interacción débil. No hay acción a distancia ni atraccion molecular, cualquiera que sea la temperatura o la presión. Por ejemplo, se supone que las moléculas del gas no están ionizadas, es decir, que carecen de carga eléctrica
— los sistemas físicos reales no son homogéneos; el calor no es la única forma de movimiento de la materia, que como cualquier otro tipo de energía interrrelaciona con todas las demás; el aspecto cualitativo de la ley de la conservación de la energía demuestra que todas las formas de energía se reconvierten unas en otras, de manera que es imposible que todas ellas adopten exclusivamente su forma térmica; la diversidad cualitativa de las formas de energía no puede desaparecer
— los sistemas físicos reales no están en estado de equilibrio, ni se mueven de un equilibrio a otro, como supone la termodinámica; el equilibrio sólo es una situación temporal y relativa entre los continuos cambios de estado
— la termodinámica divide el universo de una manera muy simple en dos partes: un sistema térmico y “todo lo demás”, que se considera exterior al mismo, e incluso inexistente, como en el caso de las radiaciones; este supuesto, como es obvio, es impensable para el universo en sí mismo
— los sistemas térmicos se suponen compuestos por muchos elementos (del orden del número de Avogadro), pero en ningún caso infinitos
— el segundo principio de la termodinámica sólo se aplica en sistemas cerrados, lo cual supone una simplificación que no existe en ninguna parte, ni siquiera en los sistemas térmicos, en los que puede adoptarse como una aproximación a la realidad que quiebra de manera definitiva fuera de ellos.
Por lo tanto, al tratarse de un fenómeno restringido, como cualquier otro de ese mismo alcance, la segunda ley de la termodinámica no es de aplicación general a fenómenos físicos ajenos al funcionamiento de dispositivos térmicos y, con mucha más razón, a fenómenos que ni siquiera son físicos, tales como los biológicos. Las leyes físicas no son universales sino que sólo se aplican a los supuestos en los cuales su validez se ha comporobado empíricamente, lo cual no es exclusivo de la segunda ley de la termodinámica. Así, la ecuación de los gases perfectos sólo es válida como aproximación en las condiciones normales de presión y temperatura, y no en otras. De la misma manera, las interacciones nucleares fuertes son de un alcance muy corto, de manera que más allá operan las fuerzas electromagnéticas, más débiles pero de mayor radio de acción. La segunda ley de la termodinámica no tiene, pues, un alcance general, ni siquiera en los fenómenos físicos, de manera que desde comienzos del siglo XIX se sabe que sus principios no se pueden aplicar al movimiento browniano, por ejemplo.
Sin embargo, no cabe duda de que, a pesar de que los supuestos en los que se funda son muy restricitvos, el concepto de entropía se ha generalizado por dos razones de muy diversa naturaleza pero coadyuvantes. La primera de ellas es que, como la cibernética o la teoría de la información, la termodinámica ha contribuído a explicar numerosos fenómenos físicos más allá de su origen empírico, más allá de los gases perfectos e incluso de los intercambios entre calor y trabajo. En algunos casos, ha demostrado su eficacia en sólidos y líquidos, y en las colisiones de determinadas partículas elementales, es decir, en supuestos en los que las interacciones son fuertes. Ahora bien, la termodinámica ha expandido su campo de aplicación analógica a costa de convertirse en un modelo formal: la mecánica estadística.
La segunda razón tiene un origen diferente pero acompaña a la anterior: desde el Renacimiento la física padece una progresiva confusión entre los conceptos y las formas cuantitativas de medirlos. En ocasiones los manuales de física pretenden tener por definidos los conceptos por la ecuación que los mide cuantitativamente, lo cual pasa por alto su dimensión cualitativa y, lo que es aún peor, reduce lo cualitativo a lo cuantitativo. Es conocida la frase de Kelvin que repudiaba todo aquello que no se pudiera contar o medir: “Cuando podemos medir aquello sobre lo que estamos hablando y expresarlo numéricamente, podemos decir que sabemos algo sobre ello; pero cuando el conocimineto no se puede medir, cuando no se puede expresar numéricamente, entonces es débil e insatisfactorio: puede ser el comienzo del conoimciento, pero apenas se ha avanzado hasta el estadio de la ciencia, sea cual sea la materia de que se trate” (322). No cabe duda que la introducción de una determinada métrica mejora el conocimiento cualitativo de los conceptos, permite su desarrollo matemático y vuelve operativas sus interacciones con otros conceptos, pero no se reduce a él. Cuando la métrica reduce los fenómenos cualitativos a su dimensión cuantitativa, como en el caso de la mecánica estadística, se convierte en un modelo matemático-formal capaz de ampliar su radio de acción a fenómenos diferentes de los que le dieron origen. Por eso la termodinámica explica otro tipo de fenómenos en los que se puede introducir una métrica análoga a la de la entropía, lo cual significa que, en tal caso, se priva a la entropía de significado, o lo que es lo mismo, se la transforma en un concepto matemático abstracto. La única conclusión que de ahí puede derivarse, lo mismo que en las múltiples aplicaciones cibernéticas, es que existen fenómenos (físicos, biológicos, económicos) que a pesar de su diferente naturaleza, funcionan de manera análoga. Ahora bien, que dos fenómenos funcionen de manera parecida no quiere decir que sean iguales, que se trate del mismo fenómeno.
Un concepto tan abstracto como el de energía padece ese mismo problema. La energía no se puede medir porque es infinita y el procedimiento utilizado por la física para medirla ha sido analítico; ha consistido en tomar en consideración la energía en fenómenos concretos y limitados: en el desplazamiento, en las reacciones químicas, en los dispositivos térmicos o en las interaccionies nucleares. Además, lo que la física mide no es un nivel absoluto de energía sino sus cambios, por lo cual ha debido tomar en consideración necesariamente su dimensión cualitativa. Así, en la caída libre de un cuerpo, la física establece la siguiente ecuación:
energía total = energía potencial + energía cinética = constante
Al lanzar un cuerpo al aire, cuando está en su punto más alto, toda su energía es potencial y la energía cinética es cero. Cuando cae al suelo, la situación se invierte: su energía potencial es cero y su energía cinética es máxima. Por el contrario, en cualquier punto intermedio, el cuerpo reparte su energía entre la potencial y la cinética. En su caída, el cuerpo va transformando progresivamente su energía de un estado cualitativo a otro; lo que pierde como energía potencial lo gana en cinética y son esas modificaciones las que permiten medir cuantitativamente cada tipo particular de energía y decir, al mismo tiempo, que la energía total es constante. La energía es una medida de la capacidad de movimiento de la materia, para lo cual se crea siempre una diferencia en la posición del cuerpo, elevándolo a una altura por encima del suelo, se crea también una diferencia en su potencial eléctrico o un desnivel en su temperatura, etc.
Salvo para los ingenieros o los economistas, no tiene ningún sentido científico afirmar que la energía se degrada o se disipa, porque en la caída de un cuerpo, la energía no se degrada al transformarse de su forma potencial a su forma cinética. Ni siquiera tiene sentido decir que la energía se degrada cuando se realiza un trabajo con ella a partir de su forma calorífica. Una corriente eléctrica genera calor que no se puede aprovechar para realizar un trabajo, pero la primera ley de la termodinámica asegura que no se pierde, ni se degrada, sino que se transmite a las moléculas más próximas. Que no se pueda aprovechar toda la energía para realizar un trabajo útil no significa que la energía se haya perdido. Al afirmar que la energía se degrada, los manuales de termodinámica siguen pagando el peaje histórico que les corresponde por el origen empírico de su disciplina. Al final de la Edad Media, cuando el trabajo mecánico se obtenía de los molinos de agua o de viento, a ningún físico se le hubiera ocurrido sostener que el agua o el viento se disipan. Pero con la máquina de vapor, Inglaterra acabó con sus bosques para quemar los troncos de los árboles en las calderas y luego tuvo que excavar minas de carbón para utilizarlo como combustible. El agua y el viento se obtenían gratuitamente, pero por la madera y el carbón había que pagar un precio y un un modo de producción basado en la codicia exige lograr la máxima rentabilidad. La termodinámica también nace de una práctica económica, con el propósito utilitario de aprovechar el rendimiento de las máquinas de vapor, realizar el máximo trabajo con el mínimo gasto de energía: es posible ejecutar una cierta cantidad de trabajo a partir de una cierta cantidad de calor, pero ese proceso no es reversible, de manera que no existe fuerza capaz de volver a acumular la misma cantidad inicial de calor utilizando el mismo trabajo. Es de ahí de donde surge esa visión ideológica -antropomórfica- repleta de significados equívocos que convierten a la entropía en la ley de la fertilidad decreciente del suelo de la economía política transplantada al trabajo mecánico, un proceso de deterioro que posteriormente se ha convertido en imparable, hasta el punto de introducir conceptos evanescentes tales como “caos”, “desorden” y otros parecidos en la teoría de la información, la demografía, la ecología o la astronomía para defender una versión termodinámica del apocalipsis. La entropía no tiene nada que ver ni con el orden ni con el desorden. En un sistema térmico un cambio en la entropía modifica las condiciones de equilibrio del gas sin que cambie necesariamente la distribución de sus moléculas en el espacio, es decir sin que produzca ni ordenación ni reordenación (322b).
La entropía no es una forma de energía sino un concepto físico que tiene un “carácter extraño, distinto a las demás magnitudes de la física” (322c). Dado que a efectos cuantitativos la energía total de un sistema térmico se considera constante y se puede distribuir de formas cualitativamente distintas, la entropía mide cuál de esas formas tiene más probabilidades de realizarse, es decir, mide el aspecto cualitativo de la energía interna de un sistema térmico, sus diferentes potencialidades evolutivas, que son direccionales porque sus probabilidades son diferentes, resultando más probables las más altas. La entropía es una probabilidad y sería adimensional desde el punto de vista físico de no ser porque Boltzmann introdujo su constante κ en la ecuación que la mide:
S = Σ κ log pi
En la ecuación no quedarían más que las distintas probabilidades de cada uno de los estados posibles pi si prescindiéramos de la constante κ, que Boltzmann introdujo con la dimensión de energía (dividida por la temperatura) por las necesidades operativas de cálculo, es decir, por dos motivos:
— lo mismo para la energía que para la entropía, lo que se mide no son los valores absolutos sino sus modificaciones cuantitativas (322d)
— la constante de Boltzmann se relaciona con la constante universal de los gases perfectos R, que es dimensional, de tal forma que R se obtiene de multiplicar κ por el número de Avogadro, que es adimensional; de esta manera Boltzmann cerraba el círculo de la mecánica estadística porque la temperatura y la energía son directamente proporcionales.
Desde luego el segundo principio de la termodinámica es inaplicable a todo el universo porque el universo no es que no sea un sistema cerrado sino que ni siquiera es un sistema (322e), y mucho menos un único sistema, un sistema homogéneo en todos sus puntos. Los sistemas térmicos se caracterizan, por ejemplo, entre otras cosas, por su volumen, encerrando en él un gas con una determinada presión y una determinada temperatura que se mantiene en un estado de equilibrio. De un sistema así se puede decir que su energía interna es constante. Por el contrario, el universo no tiene una energía constante sino infinita, un problema histórico que ha sido velado por los intentos de medir cuantitativamente la energía, cuando lo que se medía en realidad eran los cambios en la energía al transformarse cualitativamente.